NVIDIA  公布最新繪圖研究 可快速製作高品質影像

記者/Shirley

NVIDIA  宣布將在今年最重要的電腦繪圖大會SIGGRAPH 上發表 20 篇研究論文,透過與美國、歐洲和以色列十幾所大學合作的推動生成式 AI 和神經圖形的 NVIDIA Research研究論文。將於8/6至8/10在美國洛杉磯舉行的電腦繪圖專業盛會SIGGRAPH 2023 上發表,並公布目前最新繪圖研究,可快速生成合成資料,讓藝術、建築、平面設計、遊戲開發和電影創作人更快地製作出用於分鏡、預視和甚至影片製作的高品質視覺效果。

NVIDIA公布最新的繪圖研究可推動生成式 AI的發展。圖/NVIDIA提供

預計在SIGGRAPH 上發表論文,包括將文字轉換為個性化圖像的生成式人工智慧模型、將靜止圖像轉換為 3D 物件的逆向渲染工具、使用 AI 模擬複雜 3D 元素的神經物理模型、 和可解鎖生成實時、AI 驅動的視覺細節的神經渲染模型,NVIDIA將在大會中提供6門課程、4場講座和2場新興技術演示,主題包括路徑追蹤、遙現和生成式AI的擴散模型。

在全球擁有數百名科學家和工程師的NVIDIA Research團隊,專注於人工智慧、電腦繪圖、電腦視覺、自動駕駛汽車和機器人等主題。 研究人員的創新定期在 GitHub 上與開發人員分享,並整合到產品中,包括用於構建和操作元宇宙應用程式的 NVIDIA Omniverse平台和近日發表用於視覺設計的定製生成式 AI 模型代工廠NVIDIA Picasso。

NVIDIA表示, 多年的繪圖形研究幫助將電影風格的渲染帶入遊戲,今年在 SIGGRAPH 上展示的研究進展將幫助開發人員和企業快速生成合成資料,以填充用於機器人和自動駕駛車輛培訓的虛擬世界。還可以讓藝術、建築、平面設計、遊戲開發和電影創作人更快地製作出用於分鏡、預視和甚至影片製作的高品質視覺效果。

將文字轉換為圖像的生成式 AI 模型,是創造概念藝術和對於電影、遊戲和 3D 虛擬世界製作分鏡表的強大工具。為了在生成式 AI 模型的輸出中實現級別的特異性,特拉維夫大學和 NVIDIA 的研究人員撰寫了兩篇 SIGGRAPH論文,讓使用者能夠提供讓模型可以快速學習的圖像範例。

一篇論文描述了一種需要單一個示例圖像來自定義其輸出技術,在單個 NVIDIA A100 Tensor Core GPU 上將個性化過程從幾分鐘加速到大約 11 秒,比以前的個性化方法快 60 倍以上。第二篇論文介紹了一種名為 Perfusion 的高度緊湊模型,它採用少量概念圖像,允許用戶將多個個性化元素(例如特定的泰迪熊和茶壺)組合成一個人工智慧生成的視覺效果。

一旦創作者構思出虛擬世界的概念藝術,下一步就是渲染環境並使用3D物體和角色進行填充。NVIDIA Research正在發明人工智慧技術,透過自動將2D圖像和影像轉換為3D來加速這個耗時的過程,讓創作者可以將其導入繪圖應用程式進一步編輯。與加州大學聖地亞哥分校的研究人員共同創作的第三篇論文,討論了可以基於單張 2D 肖像進而生成和渲染出逼真的 3D 頭肩模型的技術,這是一個重大突破,可以讓使用AI進行3D頭像創建和3D視訊會議變得更加容易。 該方法在消費者電腦桌面上實時運行,並且可以僅使用傳統的網路攝影機或智慧手機攝影功能就生成逼真的或風格化的 3D遙現(Telepresence)遠端臨場。

第四個專案是與史丹佛大學合作,為3D角色帶來逼真的動作。研究人員建立了一個AI系統,該系統能夠從真正的網球比賽的2D影片記錄中學習一系列網球技巧,並將動作應用於3D角色。模擬的網球選手可以精確地將球打到虛擬球場上的目標位置,甚至可以與其他角色進行長時間的回合比賽。

除了網球的測試案例外,這篇SIGGRAPH文章還探討了在不使用昂貴的運動捕捉資料的情況下,創造出具有多種技能、並能進行真實運動的3D角色。當3D角色生成後,藝術家可以添加像是頭髮這樣逼真的細節,這對動畫師來說是一個複雜且需要大量運算的挑戰。人類平均有100,000根頭髮,每一根都會隨著個人動作和周圍環境而動態變化。傳統上,創作者使用物理公式來計算頭髮的運動,根據可用資源來簡化或近似頭髮的運動。這就是為什麼大製作電影中的虛擬角色擁有比即時遊戲中的角色更仔細的頭髮細節。

第五篇論文展示一種使用神經物理學的方法,可以高解析度模擬數萬根頭髮。神經物理學是一種人工智慧技術,它教導神經網路預測物體在現實世界中的運動方式。該團隊為實現完整規模頭髮的準確模擬提出了一種新穎的方法,專門針對現代GPU進行優化。與最先進基於CPU的解算器相比,它提供了顯著的效能提升,將模擬時間從多天減少到僅需幾小時,同時提高了即時的頭髮模擬品質。

這種技術終於實現了物理精確與互動的頭髮造型。神經渲染為實時繪圖帶來電影品質的細節當一個虛擬環境被填充了動畫3D物體和角色後,實時渲染會模擬光線通過虛擬場景反射的物理過程。NVIDIA最近的研究顯示,紋理、材料和體積的AI模型可以在實時渲染中提供電影等級的逼真視覺效果,可用於遊戲和數位孿生。在最新的神經渲染發明中,研究人員透過運行在NVIDIA實時繪圖管道內的AI模型來擴展可程式化著色代碼。

在第六篇SIGGRAPH論文中,NVIDIA將呈現神經紋理壓縮,在不佔用額外GPU記憶體的情況下,提供高達16倍的紋理細節,可以大幅提升3D場景的真實感。第七篇論文介紹的是NeuralVDB,這是一種AI驅動的資料壓縮技術,可使表示煙、火、雲和水等體積資料所需的記憶體減少100倍。

NVIDIA還發佈了關於更多神經材料細節的研究,這些細節在最新的NVIDIA GTC主題演講中已展示。該研究描述了一個AI系統,它學習光如何從真實的多層材料反射,將這些資產的複雜性降低到實時運行的小型神經網路,使陰影處理速度提高10倍。從這個神經網路渲染的茶壺中可以看出其逼真度,它準確地呈現了陶瓷、不完美的清釉、指紋、污跡甚至灰塵。此神經網路模型學習光如何從真實的多層材料反射更多生成式AI與繪圖研究。

瀏覽 516 次

覺得不錯的話就分享出去吧!

發佈留言

Back to top button